

Using the Google App Engine
with Java

Michael Parker
michael.g.parker@gmail.com

App Engine Introduction

● Upload your web app to sandbox, and it's
ready to go

– The good: little maintenance, scalable
transactional storage, secure and reliable
environment, standard APIs used

– The bad/unfamiliar: not a relational DB,
sandboxed filesystem and sockets, no long-
running responses

● Free quota: 500MB of storage, and CPU and
bandwidth for 5M pageviews per month

Services

● Other services:
– Java servlet 2.5 implementation, image

manipulation, asynchronous task scheduling

Service Java Standard Google Infrastructure
Authentication Servlet API Google Accounts

Datastore JPA, JDO Bigtable

Caching javax.cache memcacheg

E-mail javax.mail Gmail gateway

URLFetch URLConnection Caching HTTP Proxy

Development

● Apache Ant component to simplify common
App Engine tasks

● Google Plugin for Eclipse
● Local development server simulates the

sandbox restrictions, datastore, and services
– LRU memcache

– Disk-backed datastore

– Jakarta Commons HttpClient-backed URL
Fetch

Sandboxing

● Can read all application files uploaded with the
app; for read-write, use the datastore.

● No “direct” network access; use the URL fetch
service for HTTP/HTTPS access

● No spawning new threads or processes; must
use cron service

● Servlet requests can take up to 30s to respond
before a throwing
DeadlineExceededException

Datastore with JDO

● JDO (JSR 243) defines annotations for Java
objects, retrieving objects with queries, and
interacting with a database using transactions

● Post-compilation "enhancement" step on
compiled classes associates them with the
JDO implementation

● The PersistenceManager is the interface to
the underlying JDO implementation

● Datastore implementation is scalable with an
emphasis on reads and queries

Datastore Entities

● A entity has one or more properties, which are
ints, floats, strings, dates, blobs, or references
to other entites

● Each entity has a key; entities are fetched
using their corresponding key, or by a query
that matches its properties.

● Entities are schemaless; must enforce at the
application level

Annotating an Entity with JDO
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Employee {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 @Persistent
 private String firstName;

 @Persistent
 private String lastName;

 @Persistent
 private Date hireDate;

 Public Employee(String firstName, String lastname,
 Date hireDate) { … }

 /* accessors and other methods here */
}

Entity Keys

● Unique and identified by the @PrimaryKey
annotation.

● Keys are a kind (class name) and:
– A long automatically generated by the

datastore, e.g. the unique message ID for an
e-mail

– A string specified by the client, e.g. the
username belonging to an account

Creating Keys

Key keyFromString = KeyFactory.createKey(
 Employee.class.getSimpleName(), "Alfred.Smith@example.com");

Key keyFromLong = KeyFactory.createKey(
 Employee.class.getSimpleName(), 52234);

Key keyWithParent = new KeyFactory
 .Builder(Employee.class.getSimpleName(), 52234)
 .addChild(ExpenseReport.class.getSimpleName(), "A23Z79")
 .getKey();

● A Key instance combines the long or string
fields with key representing the entity group
ancestors, if any

Atomic Storage Operations
PersistenceManager pm = pmfInstance.getPersistenceManager();

Employee e = new Employee("Alfred", "Smith", new Date());
try {
 // Create
 pm.makePersistent(e);

 // Update
 Key key = KeyFactory.createKey(
 Employee.class.getSimpleName(),
 "Alfred.Smith@example.com");
 Employee copy = pm.getObjectById(Employee.class, key);

 // Delete
 pm.deletePersistent(copy);
} finally {
 pm.close();
}

Queries

● A query specifies
– An entity kind

– Zero or more conditions based on their
property values

– Zero or more sort orders

● Once executed, can return all entities meeting
these criteria in the given sort order, or just
their keys

● JDO has its own query language, like SQL,
with two different calling styles

JDOQL Calling Styles

● String style:
Query query = pm.newQuery("select from Employee " +
 "where lastName == lastNameParam " +
 "order by hireDate desc " +
 "parameters String lastNameParam")
List<Employee> results = (List<Employee>) query.execute("Smith");

● Method style:
Query query = pm.newQuery(Employee.class); // select from
query.setFilter("lastName == lastNameParam"); // where
query.setOrdering("hireDate desc"); // order by
query.declareParameters("String lastNameParam"); // parameters
List<Employee> results = (List<Employee>) query.execute("Smith");

Query Caveats

● Filters have a field name, an operator, and a
value

– The value must be provided by the app

– The operator must be in < <= == >= >

– Only logical and is supported for multiple filters

– Cannot test inequality on multiple properties

● A query can specify a range of results to be
returned to the application.

– Datastore must retrieve and discard all results
before to the starting offset

Indexes

● An application has an index for each
combination of kind, filter property and
operator, and sort order used in a query.

● Given a query, the datastore identifies the
index to use

– all results for every possible query that uses an
index are in consecutive rows in the table

● An index will sort entities first by value type,
then by an order appropriate to the type.

– Watch out! 38 (int) < 37.5 (float)

Custom Indexes

● In production, a query with no suitable index
will fail, but the development web server can
create the configuration for an index and
succeed

– Indexes specified in datastore-indexes.xml

● Must specify an index to be built for queries
like:

– queries with multiple sort orders

– queries with a sort order on keys in
descending order

Custom Indexes Code

● The XML configuration:
<?xml version="1.0" encoding="utf-8"?>
<datastore-indexes
 xmlns="http://appengine.google.com/ns/datastore-indexes/1.0"
 autoGenerate="true">
 <datastore-index kind="Person" ancestor="false">
 <property name="lastName" direction="asc" />
 <property name="height" direction="desc" />
 </datastore-index>
</datastore-indexes>

supports:
select from Person where lastName = 'Smith'
 && height < 72
 order by height desc

Exploding Indexes

● A property value for an entity is stored in every
custom index that refers to the property

– The more indexes that refer to a property, the
longer it takes to update a property

● For properties with multiple values, an index
has a row for every permutation of values for
every property

● To keep updates quick, datastore limits the
number of index entries an entity can have

– Insertion or update will fail with an exception

Exploding Indexes Example

● Custom index:
<?xml version="1.0" encoding="utf-8"?>
<datastore-indexes>
 <datastore-index kind="MyModel">
 <property name="x" direction="asc" />
 <property name="y" direction="asc" />
 </datastore-index>
</datastore-indexes>

MyModel m = new MyModel();
m.setX(Arrays.asList("one", "two"));
m.setY(Arrays.asList("three", "four"));
pm.makePersistent(m);

● Adding an entity:

one, two

two, one

three, four

four, three

one, two three, four

one, two four, three

two, one three, four

two, one four, three

Built-in on x:

Built-in on y:

Custom index:

Relationships

● Relationship dimensions:
– Owned versus unowned

– One-to-one versus one-to-many

– Unidirectional and bidirectional

● Implementation of the JDO can model owned
one-to-one and owned one-to-many
relationships, both unidirectional and
bidirectional

– Unowned is possible with some manual
bookkeeping, allows many-to-many

Owned, one-to-one

● Have a parent (the owner) and a child
– Follows from encapsulation in code

– Child key uses the parent key as its entity
group parent

● When the parent is retrieved, the child is
retrieved

● In unidirectional case, child has Key for parent
● In bidirectional case, child has reference to

parent
– When child is retrieved, parent is retrieved

One-to-one unidirectional code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ContactInfo /* the child */ {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Key key;

 // ...
}

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Employee /* the parent */ {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 @Persistent
 private ContactInfo contactInfo;

 // …
}

One-to-one bidirectional code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ContactInfo /* the child */ {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Key key;

 @Persistent(mappedBy = "contactInfo")
 private Employee employee;

 // ...
}

● Note that the Key member is still present
● The argument to mappedBy must be the name

of the child in the parent class

One-to-many bidirectional code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ContactInfo /* the child */ {
 // ...
 @Persistent
 private Employee employee;
 // ...
}

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Employee /* the parent */ {
 // …
 @Persistent(mappedBy = “employee”)
 private List<ContactInfo> contactInfoSets;
 // …
}

● Note that mappedBy is on the parent class, its
argument is its name in the child class

Owned collections

● Can use any Set, List, or built-in collection
implementation for owned one-to-many

● Order is preserved by storing a position
property for every element

– If an element is added or deleted, positions of
subsequent elements must be updated

● If you do not need to preserve arbitrary order,
use the @Order annotation:

@Persistent
@Order(extensions = @Extension(vendorName="datanucleus",
 key="list-ordering", value="state asc, city asc"))
private List<ContactInfo> contactInfoSets = new List<ContactInfo>();

Unowned relationships

● Use Key instances instead of instances or a
collection of instances

● Easy to model any relationship, but
– No referential integrity is enforced

– In some cases, entities on different sides of the
relationship belong to different entity groups,
disallowing atomic updates

Unowned many-to-many code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Person {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 @Persistent
 private Set<Key> favoriteFoods;
}

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Food {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 @Persistent
 private Set<Key> foodFans;
}

Relationships and Transactions

● Without a transaction, entities are created in
separate atomic actions, not a single one:

Employee e = new Employee();
ContactInfo ci = new ContactInfo();
e.setContactInfo(ci);
pm.makePersistent(e);

Transaction tx = null;
try {
 tx = pm.currentTransaction();
 tx.begin();
 pm.makePersistent(e);
 tx.commit();
} finally {
 if (tx.isActive()) {
 tx.rollback();
 }
}

Low Level Datastore API

● There is a lower-level API if you don't like the
abstraction that JDO provides you

– This is the API that the App Engine JDO
implementation uses

● Data store operations:
– get for set of keys with optional transaction

– put for set of values with optional transaction

– delete for set of keys with optional transaction

– query preparation and execution

Entity Groups

● The fundamental data unit in a transaction is
the entity group; a single transaction can only
manipulate data in one entity group.

● Each entity group is a hierarchy:
– An entity without a parent is a root entity.

– An entity that is a parent for another entity can
also have a parent.

– Every entity with a given root entity as an
ancestor is in the same entity group.

● All entities in a group are stored in the same
datastore node.

Creating a Hierarchy

● Creating a hierarchical data model is very
different from using SQL

● For example, given a online photo album, can
define the user as the root

– children can be preferences and photo albums

– children of albums can be images, which can
be further broken down into EXIF data and
comments, etc.

Hierarchies with JDO
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class AccountInfo {
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Key key;

 public void setKey(Key key) {
 this.key = key;
 }
}

public static void createAccount(String customerId, String accountId) {
 KeyFactory.Builder keyBuilder = new KeyFactory.Builder(
 Customer.class.getSimpleName(), customerId);
 keyBuilder.addChild(AccountInfo.class.getSimpleName(),
 accountId);
 Key accountKey = keyBuilder.getKey();
 return new AccountInfo(customerId, accountId);
}

Transactions

● When a transaction commits, all writes
succeed, or else the transaction fails and must
be retried.

● A transaction uses optimistic concurrency
control:

– When creating the transaction, get the time the
entity group was last updated

– On every read within the group, succeed if the
entity group time is unchanged

– On committing, or writing, succeed if the entity
group time is unchanged

Transaction Help

● With optimistic concurrency, can need to try a
transaction several times; JDO throws a
JDODataStore exception and gives up

– Consider bundling the transaction logic into a
Runnable or Callable, and have a helper
method

● Make them happen quickly
– Prepare keys and data outside the transaction

Transactions with JDO
for (int i = 0; i < NUM_RETRIES; i++) {
 pm.currentTransaction().begin();

 ClubMembers members = pm.getObjectById(
 ClubMembers.class, "k12345");
 members.incrementCounterBy(1);

 try {
 pm.currentTransaction().commit();
 break;

 } catch (JDOCanRetryException ex) {
 if (i == (NUM_RETRIES - 1)) {
 throw ex;
 }
 }
}

Memcache

● Implementation of JCache (JSR 107) atop of
memcache

● Use when you would a traditional cache:
– The data is popular or query is expensive

– Returned data can be potentially stale

– If the cached data is unavailable, the
application performs fine

● Entries evicted in LRU order when low on
memory, or an expiration time can be provided

● Like the datastore, has a low-level API

Memcache code

● Behaves like java.util.Map:
String key = "key";
byte[] value = "value".getBytes(Charset.forName(“UTF-8”));

// Put the value into the cache.
cache.put(key, value);
// Get the value from the cache.
value = (byte[]) cache.get(key);

● Has other familiar methods, like putAll,
containsKey, size, isEmpty, remove, and clear

● Can set the policy when a value exists
– Has “only replace” as well as “only add”

URL Fetch

● Synchronous HTTP or HTTPS retrieval
allowing GET, POST, PUT, HEAD, and
DELETE through a HTTP/1.1-compliant proxy

● Can set HTTP headers on outgoing requests
– Some exceptions, e.g. Host and Referer

● Use Google Secure Data Connector to access
intranet URLs

– Restricts to users signed in using an Apps
account for your domain

● Like the memcache, has a low-level API

URL Fetch Code

● URL.openStream() transparently uses URL
fetch:

URL url = new URL("http://www.example.com/atom.xml");
BufferedReader reader = new BufferedReader(
 new InputStreamReader(url.openStream()));

● As will URL.openConnection():
URL url = new URL("http://www.example.com/comment");
HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();

● URLConnection is not persistent; buffers
request until the client accesses the response,
and once received, closes the connection.

Mail

● To not use the administrator's e-mail account
as sender, create a new account and add it as
the administrator for the application

● When mail service is called, message is
enqueued and call returns immediately

– Application receives no notification of whether
delivery succeeded or failed

● Sender is the application developer or the
address of the Google Accounts user

● Like URL fetch, has a low-level API

Google Accounts

● Authentication with Google Accounts is
optional

– Address from Apps domain, or gmail.com

– Allows development of admin-only site parts

● Not SSO from other Google applications
● Datastore supports storing the User object as

a special value type, but don't rely on them as
stable user identifiers

– If a user changes his or her e-mail address,
new User is different than what is stored

Google Accounts Code
UserService userService = UserServiceFactory.getUserService();

String thisURL = request.getRequestURI();
if (request.getUserPrincipal() != null) {
 response.getWriter().println("<p>Hello, " +
 request.getUserPrincipal().getName() +
 "! You can <a href=\"" +
 userService.createLogoutURL(thisURL) +
 "\">sign out.</p>");
} else {
 response.getWriter().println("<p>Please <a href=\"" +
 userService.createLoginURL(thisURL) +
 "\">sign in.</p>");
}

Deployment Descriptor

● The web.xml in the application's WAR file
under the WEB-INF/ directory defines URL to
servlet mappings, which URLs require auth,
and other properties

– Part of the servlet standard, many references

● App Engine supports automatic compilation
and URL mapping for JSPs, and the JSP
Standard Tag Library

Deployment Security

● A user role of * requires a Google Account:
<security-constraint>
 <web-resource-collection>
 <url-pattern>/profile/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 <web-resource-collection>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>

Application Configuration

● An appengine-web.xml file specifies additional
application properties

– The application identifier

– The version identifier of the latest code

– Static files (publically served) and resource
files (application private)

– System properties and environment variables

– Toggling of SSL and sessions

Scheduled Tasks

● No Executor service for task scheduling yet...
● The cron service invokes a URL at a specified

time of day
– Scheduled tasks can access admin-only URLs

– Requests have the HTTP header X-
AppEngine-Cron: true

● Time in a simple English-like format:
– every 5 minutes

– 2nd,third mon,wed,thu of march 17:00

– every day 00:00

Scheduled Tasks cron.xml

● Timezone is UTC (i.e. GMT) by default:
<?xml version="1.0" encoding="UTF-8"?>
<cronentries>
 <cron>
 <url>/recache</url>
 <description>Repopulate the cache every 2 minutes</description>
 <schedule>every 2 minutes</schedule>
 </cron>
 <cron>
 <url>/weeklyreport</url>
 <description>Mail out a weekly report</description>
 <schedule>every monday 08:30</schedule>
 <timezone>America/New_York</timezone>
 </cron>
</cronentries>

Service Implementation
Standard Interface

JDO, JPA, JCache, JavaMail

Proprietary Interface
com.google.appengine.api.*

Language Neutral Interface
ApiProxy, protocol buffers

Implementation
Google Servers, SDK stubs

● All calls go through ApiProxy, which in turn
invokes a registered delegate

Profiling with ApiProxy
class ProfilingDelegate extends Delegate {
 Delegate parent;
 public ProfilingDelegate(Delegate parent) {
 this.parent = parent;
 }
 public byte[] makeSyncCall(Environment env, String pkg,
 String method, byte[] request) {
 long start = System.nanoTime();
 byte[] result = parent.makeSyncCall(env, pkg, method, request);
 log.log(INFO,
 pkg + “.” + method + “: “ + System.nanoTime() - start);
 return result;
 }
}

ApiProxy.setDelegate(new ProfilingDelegate(ApiProxy.getDelegate()));

Defining the Test Environment

● Implement ApiProxy.Environment to return
information that appengine-web.xml returns:

class TestEnvironment implements ApiProxy.Environment {
 public String getAppId() {
 return "Unit Tests";
 }
 public String getVersionId() {
 return "1.0";
 }
 public String getAuthDomain() {
 return "gmail.com";
 }

 // ...
}

Creating a Test Harness

● Specify the local implementations of all
services, so you do not use method stubs to a
remote server:

public class LocalServiceTestCase extends TestCase {
 @Override
 public void setUp() throws Exception {
 super.setUp();
 ApiProxy.setEnvironmentForCurrentThread(
 new TestEnvironment());
 ApiProxy.setDelegate(new ApiProxyLocalImpl(new File(".")));
 }

 // ...
}

Using the Test Harness

● Cast services to their local implementations:

public void testEmailGetsSent() {
 ApiProxyLocalImpl proxy =
 (ApiProxyLocalImpl) ApiProxy.getDelegate();
 LocalMailService mailService =
 (LocalMailService) proxy.getService("mail");
 mailService.clearSentMessages();

 Bug b = new Bug();
 b.setSeverity(Severity.LOW);
 b.setText("NullPointerException when updating phone number.");
 b.setOwner("max");
 new BugDAO().createBug(b);

 assertEquals(1, mailService.getSentMessages().size());
 // ... test the content and recipient of the email
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

