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App Engine Introduction

● Upload your web app to sandbox, and it's 
ready to go

– The good: little maintenance, scalable 
transactional storage, secure and reliable 
environment, standard APIs used

– The bad/unfamiliar: not a relational DB, 
sandboxed filesystem and sockets, no long-
running responses

● Free quota: 500MB of storage, and CPU and 
bandwidth for 5M pageviews per month



  

Services

● Other services:
– Java servlet 2.5 implementation, image 

manipulation, asynchronous task scheduling

Service Java Standard Google Infrastructure
Authentication Servlet API Google Accounts

Datastore JPA, JDO Bigtable

Caching javax.cache memcacheg

E-mail javax.mail Gmail gateway

URLFetch URLConnection Caching HTTP Proxy



  

Development

● Apache Ant component to simplify common 
App Engine tasks

● Google Plugin for Eclipse
● Local development server simulates the 

sandbox restrictions, datastore, and services
– LRU memcache

– Disk-backed datastore

– Jakarta Commons HttpClient-backed URL 
Fetch



  

Sandboxing

● Can read all application files uploaded with the 
app; for read-write, use the datastore.

● No “direct” network access; use the URL fetch 
service for HTTP/HTTPS access

● No spawning new threads or processes; must 
use cron service

● Servlet requests can take up to 30s to respond 
before a throwing 
DeadlineExceededException



  

Datastore with JDO

● JDO (JSR 243) defines annotations for Java 
objects, retrieving objects with queries, and 
interacting with a database using transactions

● Post-compilation "enhancement" step on 
compiled classes associates them with the 
JDO implementation

● The PersistenceManager is the interface to 
the underlying JDO implementation

● Datastore implementation is scalable with an 
emphasis on reads and queries



  

Datastore Entities

● A entity has one or more properties, which are 
ints, floats, strings, dates, blobs, or references 
to other entites

● Each entity has a key; entities are fetched 
using their corresponding key, or by a query 
that matches its properties.

● Entities are schemaless; must enforce at the 
application level



  

Annotating an Entity with JDO
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Employee {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Long id;

    @Persistent
    private String firstName;

    @Persistent
    private String lastName;

    @Persistent
    private Date hireDate;

    Public Employee(String firstName, String lastname,
        Date hireDate) { … }

    /* accessors and other methods here */
}



  

Entity Keys

● Unique and identified by the @PrimaryKey 
annotation.

● Keys are a kind (class name) and:
– A long automatically generated by the 

datastore, e.g. the unique message ID for an 
e-mail

– A string specified by the client, e.g. the 
username belonging to an account



  

Creating Keys

Key keyFromString = KeyFactory.createKey(
        Employee.class.getSimpleName(), "Alfred.Smith@example.com");

Key keyFromLong = KeyFactory.createKey(
        Employee.class.getSimpleName(), 52234);

Key keyWithParent = new KeyFactory
        .Builder(Employee.class.getSimpleName(), 52234)
        .addChild(ExpenseReport.class.getSimpleName(), "A23Z79")
        .getKey();

● A Key instance combines the long or string 
fields with key representing the entity group 
ancestors, if any



  

Atomic Storage Operations
PersistenceManager pm = pmfInstance.getPersistenceManager();

Employee e = new Employee("Alfred", "Smith", new Date());
try {
    // Create
    pm.makePersistent(e);

    // Update
    Key key = KeyFactory.createKey(
            Employee.class.getSimpleName(), 
            "Alfred.Smith@example.com");
    Employee copy = pm.getObjectById(Employee.class, key);

    // Delete
    pm.deletePersistent(copy);
} finally {
    pm.close();
}



  

Queries

● A query specifies
– An entity kind

– Zero or more conditions based on their 
property values

– Zero or more sort orders

● Once executed, can return all entities meeting 
these criteria in the given sort order, or just 
their keys

● JDO has its own query language, like SQL, 
with two different calling styles



  

JDOQL Calling Styles

● String style:
Query query = pm.newQuery("select from Employee " +
        "where lastName == lastNameParam " +
        "order by hireDate desc " +
        "parameters String lastNameParam")
List<Employee> results = (List<Employee>) query.execute("Smith");

● Method style:
Query query = pm.newQuery(Employee.class); // select from 
query.setFilter("lastName == lastNameParam"); // where
query.setOrdering("hireDate desc"); // order by
query.declareParameters("String lastNameParam"); // parameters
List<Employee> results = (List<Employee>) query.execute("Smith");



  

Query Caveats

● Filters have a field name, an operator, and a 
value

– The value must be provided by the app

– The operator must be in < <= == >= >

– Only logical and is supported for multiple filters

– Cannot test inequality on multiple properties

● A query can specify a range of results to be 
returned to the application.

– Datastore must retrieve and discard all results 
before to the starting offset



  

Indexes

● An application has an index for each 
combination of kind, filter property and 
operator, and sort order used in a query.

● Given a query, the datastore identifies the 
index to use

– all results for every possible query that uses an 
index are in consecutive rows in the table

● An index will sort entities first by value type, 
then by an order appropriate to the type.

– Watch out! 38 (int) < 37.5 (float)



  

Custom Indexes

● In production, a query with no suitable index 
will fail, but the development web server can 
create the configuration for an index and 
succeed

– Indexes specified in datastore-indexes.xml

● Must specify an index to be built for queries 
like:

– queries with multiple sort orders

– queries with a sort order on keys in 
descending order



  

Custom Indexes Code

● The XML configuration:
<?xml version="1.0" encoding="utf-8"?>
<datastore-indexes
  xmlns="http://appengine.google.com/ns/datastore-indexes/1.0"
  autoGenerate="true">
    <datastore-index kind="Person" ancestor="false">
        <property name="lastName" direction="asc" />
        <property name="height" direction="desc" />
    </datastore-index>
</datastore-indexes>

supports:
select from Person where lastName = 'Smith'
                      && height < 72
                   order by height desc



  

Exploding Indexes

● A property value for an entity is stored in every 
custom index that refers to the property

– The more indexes that refer to a property, the 
longer it takes to update a property

● For properties with multiple values, an index 
has a row for every permutation of values for 
every property

● To keep updates quick, datastore limits the 
number of index entries an entity can have

– Insertion or update will fail with an exception



  

Exploding Indexes Example

● Custom index:
<?xml version="1.0" encoding="utf-8"?>
<datastore-indexes>
    <datastore-index kind="MyModel">
        <property name="x" direction="asc" />
        <property name="y" direction="asc" />
    </datastore-index>
</datastore-indexes>

MyModel m = new MyModel();
m.setX(Arrays.asList("one", "two"));
m.setY(Arrays.asList("three", "four"));
pm.makePersistent(m);

● Adding an entity:

one, two

two, one

three, four

four, three

one, two three, four

one, two four, three

two, one three, four

two, one four, three

Built-in on x:

Built-in on y:

Custom index:



  

Relationships

● Relationship dimensions:
– Owned versus unowned

– One-to-one versus one-to-many

– Unidirectional and bidirectional

● Implementation of the JDO can model owned 
one-to-one and owned one-to-many 
relationships, both unidirectional and 
bidirectional

– Unowned is possible with some manual 
bookkeeping, allows many-to-many



  

Owned, one-to-one

● Have a parent (the owner) and a child
– Follows from encapsulation in code

– Child key uses the parent key as its entity 
group parent

● When the parent is retrieved, the child is 
retrieved

● In unidirectional case, child has Key for parent
● In bidirectional case, child has reference to 

parent
– When child is retrieved, parent is retrieved



  

One-to-one unidirectional code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ContactInfo /* the child */ {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Key key;

   // ...
}

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Employee /* the parent */ {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Long id;

    @Persistent
    private ContactInfo contactInfo;

    // …
}



  

One-to-one bidirectional code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ContactInfo /* the child */ {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Key key;

    @Persistent(mappedBy = "contactInfo")
    private Employee employee;

   // ...
}

● Note that the Key member is still present
● The argument to mappedBy must be the name 

of the child in the parent class



  

One-to-many bidirectional code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class ContactInfo /* the child */ {
    // ...
    @Persistent
    private Employee employee;
    // ...
}

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Employee /* the parent */ {
    // …
    @Persistent(mappedBy = “employee”)
    private List<ContactInfo> contactInfoSets;
    // …
}

● Note that mappedBy is on the parent class, its 
argument is its name in the child class



  

Owned collections

● Can use any Set, List, or built-in collection 
implementation for owned one-to-many

● Order is preserved by storing a position 
property for every element

– If an element is added or deleted, positions of 
subsequent elements must be updated

● If you do not need to preserve arbitrary order, 
use the @Order annotation:

@Persistent
@Order(extensions = @Extension(vendorName="datanucleus",
    key="list-ordering", value="state asc, city asc"))
private List<ContactInfo> contactInfoSets = new List<ContactInfo>();



  

Unowned relationships

● Use Key instances instead of instances or a 
collection of instances

● Easy to model any relationship, but
– No referential integrity is enforced

– In some cases, entities on different sides of the 
relationship belong to different entity groups, 
disallowing atomic updates



  

Unowned many-to-many code
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Person {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Long id;

    @Persistent
    private Set<Key> favoriteFoods;
}

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class Food {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Long id;

    @Persistent
    private Set<Key> foodFans;
}



  

Relationships and Transactions

● Without a transaction, entities are created in 
separate atomic actions, not a single one:

Employee e = new Employee();
ContactInfo ci = new ContactInfo();
e.setContactInfo(ci);
pm.makePersistent(e);

Transaction tx = null;
try {
    tx = pm.currentTransaction();
    tx.begin();
    pm.makePersistent(e);
    tx.commit();
} finally {
    if (tx.isActive()) {
        tx.rollback();
    }
}



  

Low Level Datastore API

● There is a lower-level API if you don't like the 
abstraction that JDO provides you

– This is the API that the App Engine JDO 
implementation uses

● Data store operations:
– get for set of keys with optional transaction

– put for set of values with optional transaction

– delete for set of keys with optional transaction

– query preparation and execution



  

Entity Groups

● The fundamental data unit in a transaction is 
the entity group; a single transaction can only 
manipulate data in one entity group.

● Each entity group is a hierarchy:
– An entity without a parent is a root entity.

– An entity that is a parent for another entity can 
also have a parent.

– Every entity with a given root entity as an 
ancestor is in the same entity group.

● All entities in a group are stored in the same 
datastore node.



  

Creating a Hierarchy

● Creating a hierarchical data model is very 
different from using SQL

● For example, given a online photo album, can 
define the user as the root

– children can be preferences and photo albums

– children of albums can be images, which can 
be further broken down into EXIF data and 
comments, etc.



  

Hierarchies with JDO
@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class AccountInfo {
    @PrimaryKey
    @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
    private Key key;

    public void setKey(Key key) {
        this.key = key;
    }
}

public static void createAccount(String customerId, String accountId) {
    KeyFactory.Builder keyBuilder = new KeyFactory.Builder(
            Customer.class.getSimpleName(), customerId);
    keyBuilder.addChild(AccountInfo.class.getSimpleName(),
            accountId);
    Key accountKey = keyBuilder.getKey();
    return new AccountInfo(customerId, accountId);
}



  

Transactions

● When a transaction commits, all writes 
succeed, or else the transaction fails and must 
be retried.

● A transaction uses optimistic concurrency 
control:

– When creating the transaction, get the time the 
entity group was last updated

– On every read within the group, succeed if the 
entity group time is unchanged

– On committing, or writing, succeed if the entity 
group time is unchanged



  

Transaction Help

● With optimistic concurrency, can need to try a 
transaction several times; JDO throws a 
JDODataStore exception and gives up

– Consider bundling the transaction logic into a 
Runnable or Callable, and have a helper 
method

● Make them happen quickly
– Prepare keys and data outside the transaction



  

Transactions with JDO
for (int i = 0; i < NUM_RETRIES; i++) {
    pm.currentTransaction().begin();

    ClubMembers members = pm.getObjectById(
            ClubMembers.class, "k12345");
    members.incrementCounterBy(1);

    try {
        pm.currentTransaction().commit();
        break;

    } catch (JDOCanRetryException ex) {
        if (i == (NUM_RETRIES - 1)) { 
            throw ex;
        }
    }
}



  

Memcache

● Implementation of JCache (JSR 107) atop of 
memcache

● Use when you would a traditional cache:
– The data is popular or query is expensive

– Returned data can be potentially stale

– If the cached data is unavailable, the 
application performs fine

● Entries evicted in LRU order when low on 
memory, or an expiration time can be provided

● Like the datastore, has a low-level API



  

Memcache code

● Behaves like java.util.Map:
String key = "key";
byte[] value = "value".getBytes(Charset.forName(“UTF-8”));

// Put the value into the cache.
cache.put(key, value);
// Get the value from the cache.
value = (byte[]) cache.get(key);

● Has other familiar methods, like putAll, 
containsKey, size, isEmpty, remove, and clear

● Can set the policy when a value exists
– Has “only replace” as well as “only add”



  

URL Fetch

● Synchronous HTTP or HTTPS retrieval 
allowing GET, POST, PUT, HEAD, and 
DELETE through a HTTP/1.1-compliant proxy

● Can set HTTP headers on outgoing requests
– Some exceptions, e.g. Host and Referer

● Use Google Secure Data Connector to access 
intranet URLs

– Restricts to users signed in using an Apps 
account for your domain

● Like the memcache, has a low-level API



  

URL Fetch Code

● URL.openStream() transparently uses URL 
fetch:

URL url = new URL("http://www.example.com/atom.xml");
BufferedReader reader = new BufferedReader(
        new InputStreamReader(url.openStream()));

● As will URL.openConnection():
URL url = new URL("http://www.example.com/comment");
HttpURLConnection connection =
        (HttpURLConnection) url.openConnection();

● URLConnection is not persistent; buffers 
request until the client accesses the response, 
and once received, closes the connection.



  

Mail

● To not use the administrator's e-mail account 
as sender, create a new account and add it as 
the administrator for the application

● When mail service is called, message is 
enqueued and call returns immediately

– Application receives no notification of whether 
delivery succeeded or failed

● Sender is the application developer or the 
address of the Google Accounts user

● Like URL fetch, has a low-level API



  

Google Accounts

● Authentication with Google Accounts is 
optional

– Address from Apps domain, or gmail.com

– Allows development of admin-only site parts

● Not SSO from other Google applications
● Datastore supports storing the User object as 

a special value type, but don't rely on them as 
stable user identifiers

– If a user changes his or her e-mail address, 
new User is different than what is stored



  

Google Accounts Code
UserService userService = UserServiceFactory.getUserService();

String thisURL = request.getRequestURI();
if (request.getUserPrincipal() != null) {
    response.getWriter().println("<p>Hello, " +
                                 request.getUserPrincipal().getName() +
                                 "!  You can <a href=\"" +
                                 userService.createLogoutURL(thisURL) +
                                 "\">sign out</a>.</p>");
} else {
    response.getWriter().println("<p>Please <a href=\"" +
                                 userService.createLoginURL(thisURL) +
                                 "\">sign in</a>.</p>");
}



  

Deployment Descriptor

● The web.xml in the application's WAR file 
under the WEB-INF/ directory defines URL to 
servlet mappings, which URLs require auth, 
and other properties

– Part of the servlet standard, many references

● App Engine supports automatic compilation 
and URL mapping for JSPs, and the JSP 
Standard Tag Library



  

Deployment Security

● A user role of * requires a Google Account: 
<security-constraint>
    <web-resource-collection>
        <url-pattern>/profile/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
        <role-name>*</role-name>
    </auth-constraint>
</security-constraint>

<security-constraint>
    <web-resource-collection>
        <url-pattern>/admin/*</url-pattern>
    </web-resource-collection>
    <auth-constraint>
        <role-name>admin</role-name>
    </auth-constraint>
</security-constraint>



  

Application Configuration

● An appengine-web.xml file specifies additional 
application properties

– The application identifier

– The version identifier of the latest code

– Static files (publically served) and resource 
files (application private)

– System properties and environment variables

– Toggling of SSL and sessions



  

Scheduled Tasks

● No Executor service for task scheduling yet...
● The cron service invokes a URL at a specified 

time of day
– Scheduled tasks can access admin-only URLs

– Requests have the HTTP header X-
AppEngine-Cron: true

● Time in a simple English-like format:
– every 5 minutes

– 2nd,third mon,wed,thu of march 17:00

– every day 00:00



  

Scheduled Tasks cron.xml

● Timezone is UTC (i.e. GMT) by default: 
<?xml version="1.0" encoding="UTF-8"?>
<cronentries>
  <cron>
    <url>/recache</url>
    <description>Repopulate the cache every 2 minutes</description>
    <schedule>every 2 minutes</schedule>
  </cron>
  <cron>
    <url>/weeklyreport</url>
    <description>Mail out a weekly report</description>
    <schedule>every monday 08:30</schedule>
    <timezone>America/New_York</timezone>
  </cron>
</cronentries>



  

Service Implementation
Standard Interface

JDO, JPA, JCache, JavaMail

Proprietary Interface
com.google.appengine.api.*

Language Neutral Interface
ApiProxy, protocol buffers

Implementation
Google Servers, SDK stubs

● All calls go through ApiProxy, which in turn 
invokes a registered delegate



  

Profiling with ApiProxy
class ProfilingDelegate extends Delegate {
    Delegate parent;
    public ProfilingDelegate(Delegate parent) {
        this.parent = parent;
    }
    public byte[] makeSyncCall(Environment env, String pkg, 
            String method, byte[] request) {
        long start = System.nanoTime();
        byte[] result = parent.makeSyncCall(env, pkg, method, request);
        log.log(INFO,
                pkg + “.” + method + “: “ + System.nanoTime() - start);
        return result;
    }
}

ApiProxy.setDelegate(new ProfilingDelegate(ApiProxy.getDelegate()));



  

Defining the Test Environment

● Implement ApiProxy.Environment to return 
information that appengine-web.xml returns:

class TestEnvironment implements ApiProxy.Environment {
    public String getAppId() {
        return "Unit Tests";
    }
    public String getVersionId() {
        return "1.0";
    }
    public String getAuthDomain() {
        return "gmail.com";
    }

    // ...
}



  

Creating a Test Harness

● Specify the local implementations of all 
services, so you do not use method stubs to a 
remote server:

public class LocalServiceTestCase extends TestCase {
    @Override
    public void setUp() throws Exception {
        super.setUp();
        ApiProxy.setEnvironmentForCurrentThread(
                new TestEnvironment());
        ApiProxy.setDelegate(new ApiProxyLocalImpl(new File(".")));
    }

    // ...
}



  

Using the Test Harness

● Cast services to their local implementations:

public void testEmailGetsSent() {
    ApiProxyLocalImpl proxy =
        (ApiProxyLocalImpl) ApiProxy.getDelegate();
    LocalMailService mailService =
        (LocalMailService) proxy.getService("mail");
    mailService.clearSentMessages();

    Bug b = new Bug();
    b.setSeverity(Severity.LOW);
    b.setText("NullPointerException when updating phone number."); 
    b.setOwner("max");
    new BugDAO().createBug(b);

    assertEquals(1, mailService.getSentMessages().size());
    // ... test the content and recipient of the email
}
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