
Michael Parker
June 2, 2012

What is Redis?
● Like the key-value store Memcache
● Optional persistence to disk
● Treats values not as opaque data, but as

data structures
○ Calls itself a "data structure server"

key1 value1

key2 value2

key3 value3

key1 [1, 1, "foo"]

key2 {2, 3, "bar", "mgp"}

key3 "f1"→"v1", "f2"→"v2"

Memcache Redis

Types and abstractions in
your code
● Numbers (integer, floating point, booleans)
● Strings (including characters)
● Hash tables (including objects)

○ get, set, contains, delete
● Lists

○ push, pop, get, set
● Sets

○ add, remove, union, intersection, difference
● Sorted sets

○ add, remove, first, last, range

Types and abstractions in
Redis
● Numbers (integer, floating point, booleans)
● Strings (including characters)
● Hash tables (including objects)

○ get, set, contains, delete
● Lists

○ push, pop, get, set
● Sets

○ add, remove, union, intersection, difference
● Sorted sets

○ add, remove, first, last, range

Play along!
http://try.redis-db.com

Numbers and strings
> SET "num1" 5
"OK"
> INCR "num1"
6
> SET "str1" "hackernews"
"OK"
> GET "str1"
"hackernews"
> MGET "num1" "str1" "unknown_key"
["6","hackernews",null]

Lists
> LPUSH "list1" 5
1
> LPUSH "list1" 4
2
> RPUSH "list1" 6
3
> LSET "list1" 1 "moo"
"OK"
> LRANGE "list1" 0 -1
["4","moo","6"]

Sets
> SADD "set1" "cats"
true
> SADD "set1" "dogs"
true
> SADD "set2" "dogs"
true
> SADD "set2" "monkeys"
true
> SUNION "set1" "set2"
["cats","dogs","monkeys"]

Maps (hashes)
> HSET "map1" "field1" "value1"
true
> HSET "map1" "field2" "value2"
true
> HEXISTS "map1" "field3"
false
> HGETALL "map1"
{"field1":"value1","field2":"value2"}

Transactions
● Commands to set/get values in maps, and

add/remove values in lists and sets and
sorted sets already take multiple arguments

● But transactions work across multiple keys
○ Atomicity
○ Fewer RPCs

Transactions - writing
> MULTI
"OK"
> HSET "map1" "field1" "value1"
"QUEUED"
> LPUSH "list1" 5
"QUEUED"
> SADD "set1" "cats"
"QUEUED"
> EXEC
[1,1,1]

Transactions - reading
> MULTI
"OK"
> HGETALL "map1"
"QUEUED"
> LRANGE "list1" 0 -1
"QUEUED"
> SMEMBERS "set1"
"QUEUED"
> EXEC
[["field1","value1"],["5"],["cats"]]

Odds and ends
● Sorted sets

○ Allow you to implement a heap or priority queue
● Publish and subscribe

○ Like an event bus
○ Kind of out of place
○ Spun off from blocking pop on lists

ReadyUp!

Creating plan identifiers
> INCR "next_plan_id"
1
> INCR "next_plan_id"
2
> INCR "next_plan_id"
3

Do the same for user identifiers.

Reading new messages
Client sends plan_id and num_messages

messages_key = "%s_messages" % plan_id
new_messages = redis.lrange(
 messages_key, num_messages, -1)

So if num_messages = 2

msg1 msg2 msg3 msg4
0 1 2 3 (-1)

Reading one plan
def get_plan(plan_id):
 pipeline = redis.pipeline()
 pipeline.hgetall("%s_hash" % plan_id)
 pipeline.smembers("%s_attendees" % plan_id)
 pipeline.lrange("%s_messages" % plan_id,
 0, -1)
 plan_data, attendees, messages =
 pipeline.execute()
 return Plan(
 plan_id, plan_data, attendees, messages)

Reading multiple plans -
filling the pipeline
pipeline = redis.pipeline()
for plan_id in plan_ids:
 pipeline_get_plan(plan_id, pipeline)

def pipeline_get_plan(plan_id, pipeline)
 pipeline.hgetall("%s_hash" % plan_id)
 pipeline.smembers("%s_attendees" % plan_id)
 pipeline.lrange("%s_messages" % plan_id,
 0, -1)

hash1 attendees1 messages1 hash2 attendees2 messages2

Reading multiple plans -
emptying the pipeline
results = pipeline.execute()
iterator = iter(results)
plans = [get_pipelined_plan(plan_id, iterator)
 for plan_id in plan_ids]

def get_pipelined_plan(plan_id, iterator):
 plan_data = next(iterator)
 attendees = next(iterator)
 messages = next(iterator)
 return Plan(
 plan_id, plan_data, attendees, messages)

In the works
● 2.6 (soon)

○ Lua scripting on the server-side
○ Performance and replication improvements
○ Redis ASCII art logo at startup

● 3.0
○ Clustering

Thanks!
http://redis.io

michael.g.parker@gmail.com
https://github.com/mgp

http://mgp.github.com/redis-la-hn.pdf

